Nondeterministic Finite Automata (NFA)

(LECTURE 4)

Introduction

- Non deterministic finite automata
- Language accepted by a NFA
- String accepted by Non Deterministic finite automata

Nondeterminism

- An important notions(or abstraction) in computer science
- refer to situations in which the next state of a computation is not uniquely determined by the current state.
 - Ex: find a program to compute max(x,y):
 - o pr1: case $x \ge y => print x;$
 - o $y \ge x => print y$
 - o endcase;
 - Then which branch will be executed when x = y?
 - o ==> don't care nondeterminism
 - o Pr2: do-one-of {
 - {if x < y fail; print x},
 - {if y < x fail, print y} }.
 - ==>The program is powerful in that it will never choose branches that finally lead to 'fail' -- an unrealistic model.
 - ==> don't know nondeterminism.

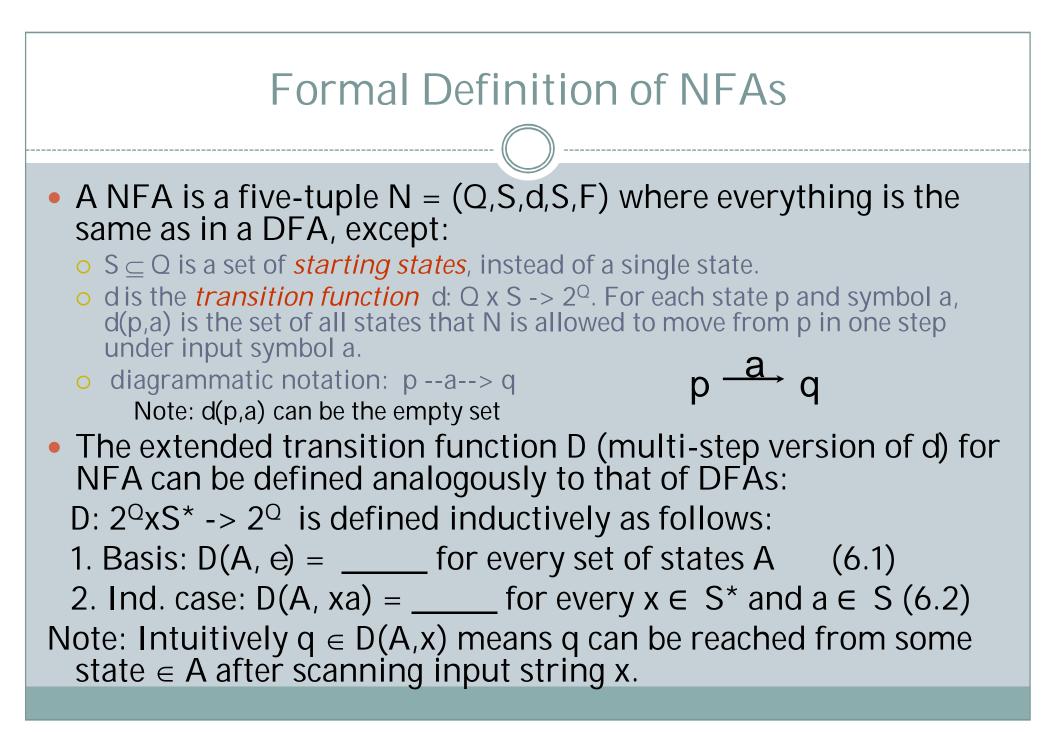
nondeterminism (cont'd)

- a nondeterministic sorting algorithm:
- nondet-sort(A, n)
 - 1. for i = 1 to n do
 - o 2. nondeterministically let k := one of {i, ..., n};
 - o 3. exchange A[i] and A[k]
 - o 4. endfor
 - 5 for i = 1 to n-1 do if A[i] > A[i+1] then fail;
 - o 6. return(A).
 - Notes: 1. Step 2 is magic in that it may produce many possible outcomes. However all incorrect results will be filtered out at step 5.
 - o 2. The program run in time NTIME O(n)
 - o cf: O(n lg n) is required for all sequential machines.

nondeterminism (cont'd)

- Causes of nodeterminism in real life:
 - o incomplete information about the state
 - o external forces affecting the course of the computation
 - o ex: the behavior of a process in a distributed system
- Nondeterministic programs cannot be executed directly but can be simulated by real machine.
- Nondeterminism can be used as a tool for the specification of problem solutions.
- an important tool in the design of efficient algorithms
 - There are many problems with efficient nondeterministic algorithm but no known efficient deterministic one.
 - the open problem NP = P?
- How to make DFAs become nondeterministic ?

==> allow multiple transitions for each state-input-symbol pair ==> modify the transition function d.



Languages accepted by NFAs

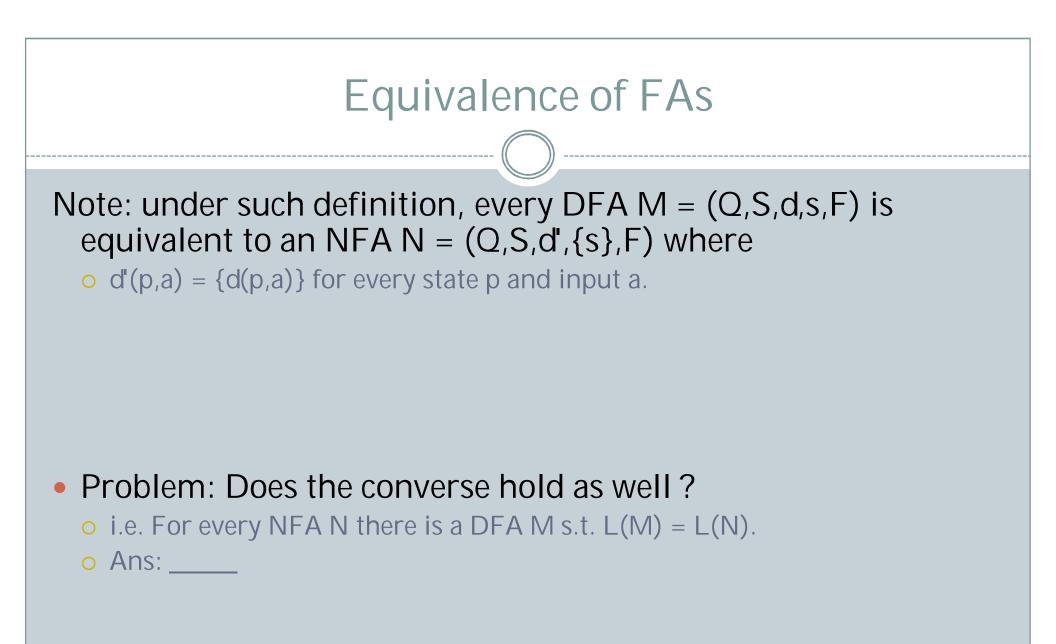
- Note: Like DFAs, the extended transition function D on a NFA N is uniquely determined by N.
 - o pf: left as an exercise.
- N = (Q,S,d,S,F) : a NFA; x: any string over S;

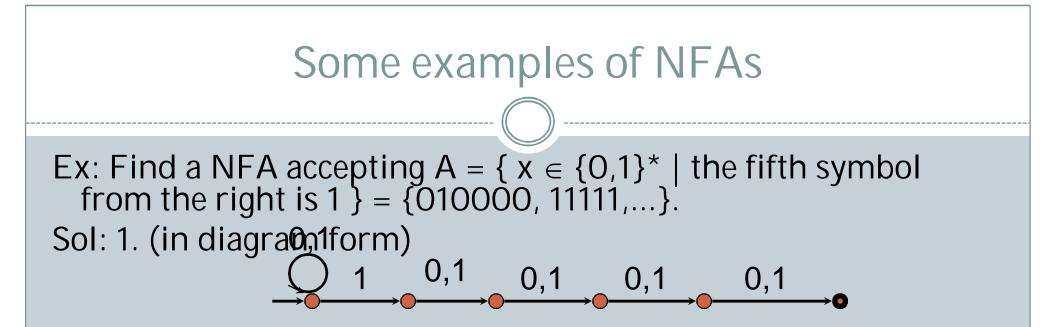
D: the extended transition function of N.

- 1. x is said to be *accepted* by N if $D(S,x) \cap F \neq \{\}$
 - i.e., x is accepted if there is an accept state $q \in F$ such that q is reachable from a start state under input string x (i.e., $q \in D(S,x)$)
- 2. The set (or language) accepted by N, denoted L(N), is the set of all strings accepted by N. i.e.,

• $L(N) =_{def} \{x \in S^* \mid N \text{ accepts } x \}.$

 Two finite automata (FAs, no matter deterministic or nondeterministic) M and N are said to be equivalent if L(M) = L(N).





2: tabular form:

3. tuple form: $(Q,S,d,S,F) = (_,_,_,_)$.

Example of strings accepted by NFAs

- Note: there are many possible computations on the input string: 010101, some of which reach the (only) final state (accepted or successful computation), some of which do not (fail).
- Since there exists an accepted computation, by definition, the string is accepted by the machine

$$0,1$$

 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$
 $0,1$

Some properties about the extended transition function D

- Lem 6.1: D(A,xy) = D(D(A,x),y).
- pf: by induciton on |y|:

1.
$$|y| = 0 = D(A,xe) = D(A,x) = D(D(A,x),e) -- (6.1).$$

2.
$$y = zc => D(A, xzc) = U_{q \in D(A, xz)} d(q, c) -- (6.2)$$

= $U_{q \in A(D(A, x), z)} d(q, c) -- ind. hyp.$

- = D(D(A,x),zc) -- (6.2)
- Lem 6.2 D commutes with set union:
 i.e., D (U_{i ∈ I} A_i,x) = U_{i ∈ I} D(A_i,x). in particular, D(A,x) = U_{p∈ A} D({p},x)
- pf: by ind. on |x|. Let $B = U_{i \in I} A_i$ 1. $|x| = 0 => D(U_{i \in I} A_i, e) = U_{i \in I} A_i = U_{i \in I} D(A_i, e) -- (6.1)$ 2. $x = ya => D(U_{i \in I} A_i, ya) = U_{p \in D(B,y)} d(p,a) -- (6.2)$ $= U_{p \in U_{i \in I} D(A_i,y)} d(p,a) -- ind. hyp. = U_{i \in I} U_{p \in D(A_i,x)} d(P,a) -- set theory = U_{i \in I} D(A_i, ya) (6.2)$

The subset construction

- $N = (Q_N, S, d_N, S_N, F_N) : a NFA.$
- $M = (Q_M, S, d_M, s_M, F_M)$ (denoted 2^N): a DFA where
 - $O_{M} = 2 O_{N}$
 - o $d_M(A,a) = D_N(A,a)$ (= $U_{q \in A} d_N(q,a)$) for every $A \subseteq Q_N$.
 - $o S_M = S_N$ and
 - $\circ \ F_M = \{A \subseteq Q_N \mid A \cap F_N \neq \{\}\}.$
 - o note: States of M are subsets of states of N.
- Lem 6.3: for any $A \subseteq Q_N$. and x in S^{*}, $D_M(A,x) = D_N(A,x)$. pf: by ind on |x|. if $x = e => D_M(A,e) = A = D_N(A,e)$. --(def) if $x = ya =>D_M(A,ya) = d_M(D_M(A,y),a)$ -- (def) = $d_M(D_N(A,y),a)$ -ind. hyp. = $D_N(D_N(A,y),a)$ -- def of $d_M = D_N(A, ya)$ -- lem 6.1 Theorem 6.4: M and N accept the same set.

pf: $x \in L(M)$ iff $D_M(s_M, x) \in F_M$ iff $D_N(S_N, x) \cap F_N \neq \{\}$ iff $x \in L(N)$.

Equivalence of NFAs and DFAs - an example

1. NFA N accepting A = { $x \in \{0,1\}^*$ | the second symbol from the right is 1 } = { $x1a \mid x \in \{0,1\}^*$ and $a \in \{0,1\}$ }.

sol:

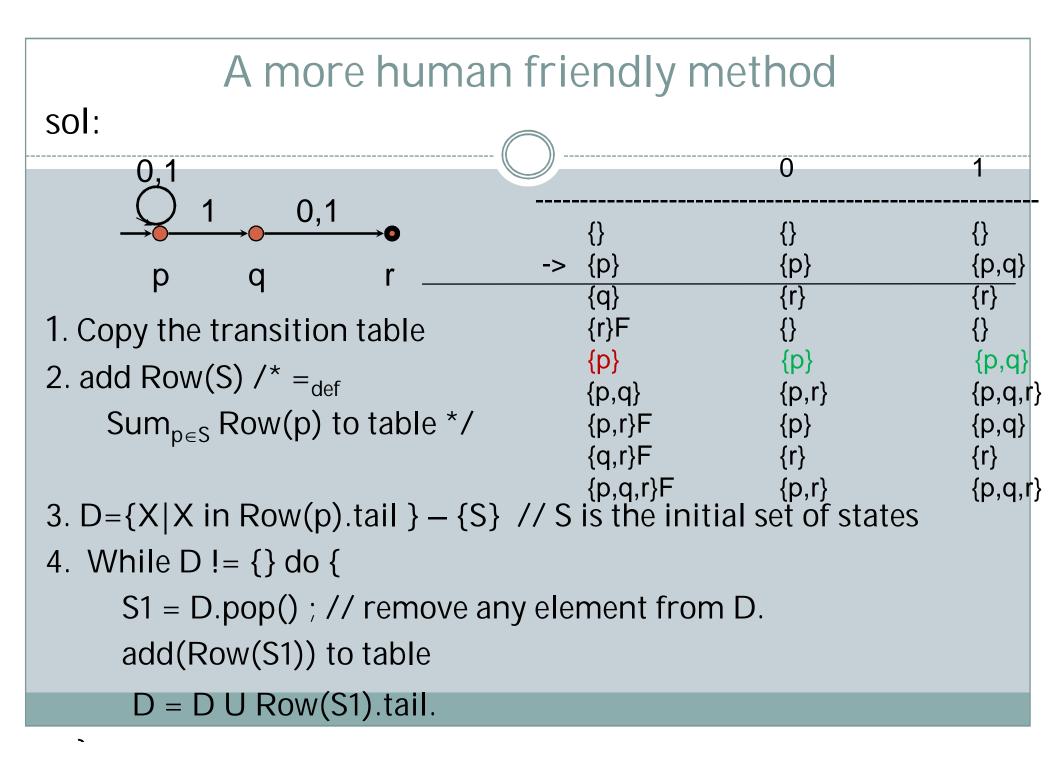
2.

3.

0,1		0	1
p q r DFA M equivalent to N is given as : some states of M are	{} -> {p} {q} {r}F {p,q} {p,r}F {q,r}F {q,r}F {p,q,r}F	{} {p} {r} {} {p,r} {p,r} {p} {r} {p,r}	{} {p,q} {r} {} {p,q,r} {p,q} {r,} {p,q,r}

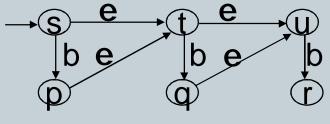
that they are never reachable

from the start state and hence can be removed from the machine w/o affecting the languages accepted.



e-transition

- Another extension of FAs, useful but adds no more power.
- An e-transition is a transition with label e, a label standing for the empty string e
- The FA can take such a P Y transition anytime w/o reading an input symbol.
- Ex 6.5 : The set accepted by the FA is {b,bb,bbb}.
- Ex 6.6 : A NFA-eaccepting the set $\{x \in \{a\}^* \mid |x| \text{ is dividable by 3 or 5 }\}$.
- real advantage of e-transition:
 - convenient for specification
 - o add no extra power



Ex6.5

NFA-e

• N = (Q,S,d,S,F) : a NFA-e, where

O, S, S and F are the same as NFA,
 O : O x (SU {e}) -> 2^O.

 The set Eclosure(A) is the set of ref. and transitive closure of the e-transition of A =

{ $q \in Q | \exists e-path p - p_1 - p_2 \dots - p_n \text{ with } p \in A \text{ and } p_n = q$ }

Note: Eclosure(A) (abbreviated as EC(A)) = EC(EC(A)).

- The multistep version of d is modified as follows:
 - D: 2^Q x S^{*} → 2^Q where, for all A ⊆ Q , y ∈ S^{*}, a ∈ A
 - o D(A, e) = Eclosure(A)
 - $D(A, ya) = U_{p \in D(A,y)} Eclosure(d(p,a))$

• $L(N) = \{ x \mid D(S), x \} \cap F \neq \{ \} \} //The language accepted by N$

E-closure

 Eclosure(A) is the set of states reachable from states of A without consuming any input symbols,

(i.e., $q \in Eclosure(A)$ iff $\exists p \in A$ s.t. $q \in D(p, e^k)$ for some $k \ge 0$).

- Eclosure(A) can be computed as follows:
 - 1. R=F={}; nF=A; //F: frontier; nF: new frontier
 - 2. do { $R = R U nF; F = nF; nF={};$
 - 3. For each $q \in F$ do

4.
$$nF = nF U (d(q, e) - R)$$

- 5. $while nF \neq \{\};$
- 6. return R

Note:1. $q \in D(A, e^k) => q \in R$ after k-th iteration of the program.

2. We can precompute the matrix T* where T is the e-transition matrix of the NFA. and use the result to get Eclosure(A) for all required As.

The subset construction for NFA-e

- $N = (Q_N, S, d_N, S_N, F_N) : a NFA-e.where d_N : Q x (SU {e}) -> 2^Q.$
- $M = (Q_M, S, d_M, s_M, F_M)$ (denoted 2^N): a DFA where
 - $O_{M} = \{ EC(A) \mid A \subseteq O_{N} \}$
 - $d_M(A,a) = U_{q \in Ec(A)} EC(d_N(q,a))$ for every A ∈ Q_M.
 - $o s_M = EC(S_N)$ and
 - $\circ \ F_M = \{A \in Q_M \mid A \cap F_N \neq \{\}\}.$
 - o note: States of M are subsets of states of N.

• Lem 6.3: for any $A \subseteq Q_N$. and $x \in S^*$, $D_M(A,x) = D_N(A,x)$. pf: by ind on |x|. if $x = e => D_M(A,e) = A = EC(A) = D_N(A,e)$. --(def) if $x = ya =>D_M(A,ya) = d_M(D_M(A,y),a)$ -- (def) $= d_M(D_N(A,y),a)$ -- ind. hyp. $= U_{q \in DN(A,y)} EC(d_N(q,a))$ -- def of d_M $= D_N(A, ya)$ -- def of D_N Theorem 6.4: M and N accept the same set.

 $pf: x \in L(M) \text{ iff } D_M(s_{M'}x) \in F_M \text{ iff } D_N(EC(S_N),x) \cap F_N \neq \{\} \text{ iff } x \in L(N).$

More closure properties

- If A and B are regular languages, then so are AB and A*.
- $M = (Q_1, S, d_1, S_1, F_1), N = (Q_2, S, d_2, S_2, F_2)$: two NFAs
- The machine M N, which firstly executes M and then execute sN, can be defined as follows:
- M N =_{def} (Q, S, d, S, F) where
 - $Q = disjoint union of Q_1 and Q_2$
 - $o S = S_{1'}$
 - **o** $F = F_{2'}$
 - o $d = d_1 U d_2 U \{ (p, e, q) | p \in F_1 \text{ and } q \in S_2 \}$
- Lem: 1. $x \in L(M)$ and $y \in L(N)$ then $xy \in L(MN)$

2. $x \in L(MN) =>$ \$ y,z s.t. x = yz and $y \in L(M)$ and $z \in L(N)$. Corollary: L(MN) = L(M) L(N)

M* machine

- $M = (Q_1, S, d_1, S_1, F_1) : a NFA$
- The machine M*, which executes M a nondeterministic number of times, can be defined as follows:
- M* =_{def} (Q, S, d, S, F) where
 Q = Q U {s,f}, where s and f are two new states ∉Q
 S = {s}, F = {f},
 d = d₁ U {(s, e, f)} U {(s,e,p) | p ∈ S₁} U {(q,e,s) | q ∈ F₁}

Theorem: $L(M^*) = L(M)^*$

