
(LECTURE 4)

Nondeterministic Finite Automata (NFA)



Introduction

 Non deterministic finite automata

 Language accepted by a NFA

 String accepted by Non Deterministic finite automata 



Nondeterminism

 An important notions(or abstraction) in computer science
 refer to situations in which the next state of a computation is not 

uniquely determined by the current state.
 Ex: find a program to compute max(x,y):
 pr1: case   x   y => print x;
 y  x => print y
 endcase;
 Then which branch will be executed when x = y ?
 ==> don't care nondeterminism
 Pr2: do-one-of {
 {if x < y fail; print x},
 {if y < x fail, print y} }.
 ==>The program is powerful in that it will never choose branches that 

finally lead to ‘fail’ -- an unrealistic model.  
 ==> don't know nondeterminism. 



nondeterminism (cont'd)

 a nondeterministic sorting algorithm:
 nondet-sort(A, n)
 1. for i = 1 to n do
 2.   nondeterministically let  k := one of  {i, ..., n} ;        
 3.   exchange A[i] and A[k]
 4. endfor
 5 for i = 1 to n-1 do if A[i] > A[i+1] then fail;
 6. return(A).
 Notes: 1. Step 2 is magic in that it may produce many possible 

outcomes. However all incorrect results will be filtered out at step 5.
 2. The program run in time NTIME O(n)
 cf: O(n lg n) is required for all sequential machines.



nondeterminism (cont'd)

 Causes of nodeterminism in real life:
 incomplete information about the state
 external forces affecting the course of the computation
 ex: the behavior of a process in a distributed system

 Nondeterministic programs cannot be executed directly but can 
be simulated by real machine. 

 Nondeterminism can be used as a tool for the specification of 
problem solutions.  

 an important tool in the design of efficient algorithms
 There are many problems with efficient nondeterministic algorithm but no 

known efficient deterministic one.
 the open problem NP = P ? 

 How to make DFAs become nondeterministic ?
==> allow multiple transitions for each state-input-symbol pair 
==> modify the transition function d.



Formal Definition of NFAs

 A NFA is a five-tuple N = (Q,S,d,S,F) where everything is the 
same as in a DFA, except:
 S Q is a set of starting states, instead of a single state.
 d is the transition function d: Q x S -> 2Q. For each state p and symbol a, 
d(p,a) is the set of all states that N is allowed to move from p in one step 
under input symbol a.

 diagrammatic notation:  p --a--> q
Note: d(p,a) can be the empty set

 The extended transition function D (multi-step version of d) for 
NFA can be defined analogously to that of DFAs: 
D: 2QxS* -> 2Q is defined inductively as follows:
1. Basis: D(A, e) =  ____ for every set of states A (6.1)
2. Ind. case: D(A, xa) = ____ for every x ∈ S* and a ∈ S (6.2)

Note: Intuitively q  D(A,x) means q can be reached from some 
state  A after scanning input string x.

p qa



Languages accepted by  NFAs

 Note: Like DFAs, the extended transition function D on a NFA N is 
uniquely determined by N.
 pf: left as an exercise.

 N = (Q,S,d,S,F) : a NFA; x: any string over S;
D: the extended transition function of N. 

1.  x is said to be accepted by N if D(S,x)  F  {}
 i.e., x is accepted if there is an accept state q  F such that q is reachable from a 

start state under input string x (i.e., q  D(S,x))       

2. The set (or language) accepted by N, denoted L(N), is the set of all 
strings accepted by N. i.e.,
 L(N) =def  {x  S* | N accepts x }.

3. Two finite automata (FAs, no matter deterministic or 
nondeterministic) M and N are said to be equivalent if L(M) = L(N).



Equivalence of FAs

Note: under such definition, every DFA M = (Q,S,d,s,F) is 
equivalent to an NFA N = (Q,S,d',{s},F) where
 d'(p,a) = {d(p,a)} for every state p and input a.

 Problem: Does the converse hold as well ?
 i.e. For every NFA N there is a DFA M s.t. L(M) = L(N).
 Ans: ____



Some examples of NFAs

Ex: Find a NFA accepting A = { x  {0,1}* | the fifth symbol 
from the right is 1 } = {010000, 11111,...}.

Sol: 1. (in diagram form)

2: tabular form:

3. tuple form: (Q,S,d,S,F) = (__,__,__,__,__).

1 0,1 0,1 0,1 0,1
0,1



Example of strings accepted by NFAs

 Note: there are many possible computations on the input 
string: 010101, some of which reach the (only) final state 
(accepted or successful computation), some of which do 
not (fail).

 Since there exists an accepted computation, by definition, 
the string is accepted by the machine

1 0,1 0,1 0,1 0,1
0,1

- 0  - 1  - 0  - 1   - 0   - 1  - (accept)

- 0  - 1  - 0  - 1   - 0   - 1  - (fail)



Some properties about the extended 
transition function D

 Lem 6.1: D(A,xy) = D(D(A,x),y).

 pf: by induciton on |y|: 
1. |y| = 0 =>  D(A,xe) = D(A,x) = D(D(A,x),e)  -- (6.1).
2.  y = zc => D(A,xzc) = Uq  D(A,xz) d(q,c)   -- (6.2)

= U q (D(A,x),z) d(q,c) -- ind. hyp.
= D(D(A,x),zc) -- (6.2)

 Lem 6.2 D commutes with set union: 
 i.e., D (Ui  I Ai,x) = Ui  I D(Ai,x). in particular, D(A,x) = Up A D({p},x)

 pf: by ind. on |x|. Let B = U i  I Ai

1. |x|= 0 => D (U i  I Ai, e) = Ui  I Ai =  Ui  I D(Ai, e)  -- (6.1)

2. x = ya =>  D (U i  I Ai, ya) =  U p  D(B,y) d(p,a)  -- (6.2)

= UpUi I D(Ai,y) d(p,a)  -- ind. hyp.  = UiIUp D(Ai,x) d(P,a)  -- set theory = 
U i  I D(Ai,ya)   (6.2)



The subset construction

 N = (QN,S,dN,SN,FN) : a NFA.

 M = (QM,S,dM,sM,FM)  (denoted 2N): a DFA where
 QM = 2 QN

 dM(A,a) = DN(A,a)  ( = ⋃q∈ A dN(q,a) ) for every A  QN.

 sM = SN and

 FM = {A  QN | A FN  {}}.

 note: States of M are subsets of states of N.

 Lem 6.3: for any A  QN. and x in S*, DM(A,x) = DN(A,x).

pf: by ind on |x|. if x = e=> DM(A,e) = A = DN(A,e). --(def)

if x = ya =>DM(A,ya) =  dM(DM(A,y),a)  -- (def) = dM(DN(A,y),a) --

ind. hyp.  = DN(DN(A,y),a)  -- def of dM =DN(A, ya) -- lem 6.1
Theorem 6.4: M and N accept the same set.

pf: x L(M) iff DM(sM,x)FM iff DN(SN,x) FN  {} iff x  L(N).



Equivalence of NFAs and DFAs - an example

1. NFA N accepting A = { x  {0,1}* | the second symbol from the 
right is 1 } = {x1a | x  {0,1}* and a  {0,1} }.

sol: 

2. DFA M equivalent 

to N is given as :

3. some states of M are 

redundant in the sense 

that they are never reachable

from the start state and hence can be removed from the machine  
w/o affecting the languages accepted.

1 0,1
0,1

p q r

0 1
---------------------------------------------------------

{} {} {}
-> {p} {p} {p,q}

{q} {r} {r}
{r}F {} {}
{p,q} {p,r} {p,q,r}
{p,r}F {p} {p,q}
{q,r}F {r} {r}
{p,q,r}F {p,r} {p,q,r}



A more human friendly method
sol: 

1. Copy the transition table

2. add Row(S) /* =def

SumpS Row(p) to table */

3. D={X|X in Row(p).tail } – {S} // S is the initial set of states

4.  While D != {} do {

S1 = D.pop() ; // remove any element from D.

add(Row(S1)) to table

D = D U Row(S1).tail.

}

1 0,1
0,1

p q r

0 1
---------------------------------------------------------

{} {} {}
-> {p} {p} {p,q}

{q} {r} {r}
{r}F {} {}
{p} {p} {p,q}
{p,q} {p,r} {p,q,r}
{p,r}F {p} {p,q}
{q,r}F {r} {r}
{p,q,r}F {p,r} {p,q,r}



e-transition

 Another extension of FAs, useful but adds no more power.

 An e-transition is a transition with label e, a label standing for 
the empty string e.

 The FA can take such a 

transition anytime w/o reading an input symbol.

Ex 6.5 : The set accepted by the FA is {b,bb,bbb}.

Ex 6.6 : A NFA-eaccepting the set {x ∈ {a}* | |x| is dividable by 3 
or 5 }.

 real advantage of e-transition:
 convenient for specification

 add no extra power

p qe

s

qp

t u

r
b b b
e e
e e

Ex6.5



NFA-e

 N = (Q,S,d,S,F) : a NFA-e,where 
 Q, S, S and F are the same as NFA,
 d : Q x (SU {e}) -> 2Q.

 The set Eclosure(A) is the set of ref. and transitive closure of the 
e-transition of A = 
{ q ∈ Q |∃ e-path p – p1 – p2 … -pn with p ∈ A and pn = q }

Note: Eclosure(A) (abbreviated as EC(A) ) = EC(EC(A)).
 The multistep version of d is modified as follows:
 D: 2Q x S*  2Q where, for all A ⊆ Q , y ∈ S*, a ∈ A
 D(A, e) = Eclosure(A)
 D(A, ya) = U p ∈ D(A,y) Eclosure( d(p,a) )

 L(N) = { x | D(S), x)  F  {} } //The language accepted by N 



E-closure

 Eclosure(A) is the set of states reachable from states of A without consuming any 
input symbols,

(i.e., q∈Eclosure(A) iff∃p∈ A s.t. q ∈ D(p, ek) for some k ≥ 0 ).

 Eclosure(A) can be computed as follows:

1. R=F={}; nF=A; //F: frontier; nF: new frontier 
2. do {  R = R U nF; F = nF; nF={};
3. For each q ∈ F do
4.  nF = nF U (d(q,e)- R)  
5. }while nF ≠ {};   
6. return R

Note:1.  q ∈ D(A, ek) => q ∈ R after k-th iteration of the program.

2. We can precompute the matrix T* where T is the e-transition matrix of the NFA. 
and use the result to get Eclosure(A) for all required As.



The subset construction for NFA-e

 N = (QN,S,dN,SN,FN) : a NFA-e.where dN : Q x (SU {e}) -> 2Q.
 M = (QM,S,dM,sM,FM)  (denoted 2N): a DFA where
 QM = { EC(A) | A  QN }
 dM(A,a) = ⋃q∈ Ec(A) EC(dN(q,a)) for every A  ∈ QM.
 sM = EC(SN) and
 FM = {A  QM | A FN  {}}.
 note: States of M are subsets of states of N.

 Lem 6.3: for any A  QN. and x ∈ S*, DM(A,x) = DN(A,x).
pf: by ind on |x|. if x = e=> DM(A,e) = A =EC(A) = DN(A,e). --(def)
if x = ya =>DM(A,ya) =  dM(DM(A,y),a)  -- (def)  

= dM(DN(A,y),a)  -- ind. hyp.  
= U q ∈ DN(A,y) EC(dN(q,a))  -- def of dM

= DN(A, ya) – def of DN

Theorem 6.4: M and N accept the same set.
pf: x L(M) iff DM(sM,x)FM iff DN(EC(SN),x) FN  {} iff x  L(N).



More closure properties

 If A and B are regular languages, then so are AB and A*.

 M = (Q1,S,d1,S1,F1), N=(Q2,S,d2,S2,F2) : two NFAs

 The machine M  N, which firstly executes M and then execute sN,  
can be defined as follows: 

 M  N =def (Q, S, d, S, F) where
 Q = disjoint union of Q1 and Q2,

 S = S1,

 F = F2,

 d= d1 U d2 U { (p, e, q ) | p  F1 and q  S2 }

 Lem: 1. x  L(M) and y  L(N) then xy  L(MN)

2. x  L(MN) => $ y,z s.t. x = yz and y  L(M) and z  L(N).

Corollary:  L(MN) = L(M) L(N)



M* machine

 M = (Q1,S,d1,S1,F1) : a NFA

 The machine M*, which executes M a nondeterministic 
number of times,  can be defined as follows: 

 M* =def (Q, S, d, S, F) where
 Q = Q U {s,f}, where s and f are two new states Q

 S = {s},   F =  {f},

 d= d1 U {(s, e, f)} U {(s,e,p) | p  S1 } U {(q,e,s) | q  F1 }

Theorem: L(M*) = L(M)*
e

e

e

M

M *


