Nondeterministic Finite Automata (NFA)

(LECTURE 4)

Introduction

- Non deterministic finite automata
- Language accepted by a NFA
- String accepted by Non Deterministic finite automata

Nondeterminism

- An important notions(or abstraction) in computer science
- refer to situations in which the next state of a computation is not uniquely determined by the current state.
- Ex: find a program to compute max (x, y) :
- pr1: case $x \geq y=>$ print x;
- $y \geq x=>$ print y
- endcase;
- Then which branch will be executed when $x=y$?
- $\quad=>$ don't care nondeterminism
- Pr2: do-one- of \{
- \quad if $x<y$ fail; print $x\}$,
- \{if $y<x$ fail, print $y\}$ \}.
$\circ \Longrightarrow$ The program is powerful in that it will never choose branches that finally lead to 'fail' -- an unrealistic model.

nondeterminism (cont'd)

- a nondeterministic sorting algorithm:
- nondet-sort(A, n)
- 1. for $\mathrm{i}=1$ to n do
- 2. nondeterministically let $\mathrm{k}:=$ one of $\{\mathrm{i}, \ldots, \mathrm{n}\}$;
- 3. exchange $\mathrm{A}[\mathrm{i}]$ and $\mathrm{A}[\mathrm{k}]$
- 4. endfor
- 5 for $\mathrm{i}=1$ to $\mathrm{n}-1$ do if $\mathrm{A}[\mathrm{i}]>\mathrm{A}[\mathrm{i}+1]$ then fail;
- 6. return(A).
- Notes: 1. Step 2 is magic in that it may produce many possible outcomes. However all incorrect results will be filtered out at step 5 .
- 2. The program run in time NTIME O(n)
- cf: $O(n \lg n)$ is required for all sequential machines.

nondeterminism (cont'd)

- Causes of nodeterminism in real life:
- incomplete information about the state
- external forces affecting the course of the computation
- ex: the behavior of a process in a distributed system
- Nondeterministic programs cannot be executed directly but can be simulated by real machine.
- Nondeterminism can be used as a tool for the specification of problem solutions.
- an important tool in the design of efficient algorithms

There are many problems with efficient nondeterministic algorithm but no known efficient deterministic one.
the open problem NP = P ?

- How to make DFAs become nondeterministic?
$=>$ allow multiple transitions for each state-input-symbol pair $\Longrightarrow>$ modify the transition function .

Formal Definition of NFAs

- A NFA is a five-tuple $N=(Q$, , $S, F)$ where everything is the same as in a DFA, except:
$\mathrm{S} \subseteq \mathrm{Q}$ is a set of starting states, instead of a single state.
is the transition function : Qx $\quad->2^{\mathrm{Q}}$. For each state p and symbol a , (p, a) is the set of all states that N is allowed to move from p in one step under input symbol a.
diagrammatic notation: p --a-->q

$$
p \xrightarrow{a} q
$$

Note: (p, a) can be the empty set

- The extended transition function (multi-step version of) for NFA can be defined analogously to that of DFAs:
$: 2^{\mathrm{Q}} \mathrm{X} *->2^{\mathrm{Q}}$ is defined inductively as follows:

1. Basis: (A, \quad) =__-_ for every set of states A
2. Ind. case: $(\mathrm{A}, \mathrm{xa})=_{-\ldots-}$ for every $\mathrm{x} \in \quad *$ and $\mathrm{a} \in$ (6.2)

Note: Intuitively $q \in(A, x)$ means q can be reached from some state \in A after scanning input string x.

Languages accepted by NFAs

- Note: Like DFAs, the extended transition function on a NFA Nis uniquely determined by N .
\circ pf: left as an exercise.
- $N=(Q, \quad, \quad S, F)$: a NFA; x : any string over ;
: the extended transition function of N .

1. x is said to be accepted by N if $(S, x) \cap F \neq\{ \}$

- i.e., x is accepted if there is an accept state $\mathrm{q} \in \mathrm{F}$ such that q is reachable from a start state under input string x (i.e., $q \in(S, x)$)

2. The set (or language) accepted by N, denoted $L(N)$, is the set of all strings accepted by N. i.e.,
$\circ L(N)={ }_{\text {def }}\{x \in * \mid N$ accepts $x\}$.
3. Two finite automata (FAs, no matter deterministic or nondeterministic) M and N are said to be equivalent if $\mathrm{L}(\mathrm{M})=\mathrm{L}(\mathrm{N})$.

Equivalence of FAs

Note: under such definition, every DFA $M=(Q$, , $s, F)$ is equivalent to an $\mathrm{NFA} \mathrm{N}=(\mathrm{Q}$, , ', $\{\mathrm{s}\}, \mathrm{F})$ where $'(p, a)=\{(p, a)\}$ for every state p and input a.

- Problem: Does the converse hold as well ?
- i.e. For every NFA N there is a DFA M s.t. L(M) = L(N).
- Ans:

Some examples of NFAs

Ex: Find a NFA accepting $A=\left\{x \in\{0,1\}^{*} \mid\right.$ the fifth symbol from the right is 1$\}=\{010000,11111, \ldots\}$.
Sol: 1. (in diagraon1form)

2: tabular form:
3. tuple form: $(\mathrm{Q}, \mathrm{}, \mathrm{}, \mathrm{S,F})=(\ldots, \ldots, \ldots, \ldots, \quad)$.

Example of strings accepted by NFAs

- Note: there are many possible computations on the input string: 010101, some of which reach the (only) final state (accepted or successful computation), some of which do not (fail).
- Since there exists ar accented computation, by definition, the string is accepted by the machine

Some properties about the extended transition function

- Lem 6.1: $\quad(\mathrm{A}, \mathrm{xy})=((\mathrm{A}, \mathrm{x}), \mathrm{y})$.
- pf: by induciton on $|\mathrm{y}|$:

$$
\begin{aligned}
& \text { 1. }|\mathrm{y}|=0 \Rightarrow \quad(\mathrm{~A}, \mathrm{x})=(\mathrm{A}, \mathrm{x})=((\mathrm{A}, \mathrm{x}),)--(6.1) \text {. } \\
& \text { 2. } y=z c \Rightarrow(A, x z C)=U_{q \in(A, x z)}(q, C)--(6.2) \\
& =U_{q \in \Delta((A, x), z)}(q, C) \quad-- \text { ind. hyp. } \\
& =((\mathrm{A}, \mathrm{x}), \mathrm{zc}) \quad--(6.2)
\end{aligned}
$$

- Lem 6.2 commutes with set union:
\circ i.e., $\quad\left(U_{i \in I} A_{i,}, x\right)=U_{i \in I} \quad\left(A_{i}, x\right)$. in particular, $\quad(A, x)=U_{p \in A} \quad(\{p\}, x)$
- pf: by ind. on $|x|$. Let $B=U_{i \in I} A_{i}$

1. $|x|=0 \Rightarrow\left(U_{i \in I} A_{i},\right)=U_{i \in I} A_{i}=U_{i \in I} \quad\left(A_{i},\right)--(6.1)$
2. $\mathrm{x}=\mathrm{ya}=>$
$\left(\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{A}_{\mathrm{i}}, \mathrm{ya}\right)=\mathrm{U}_{\mathrm{p} \in(\mathrm{B}, \mathrm{y})} \quad(\mathrm{p}, \mathrm{a})-$-- (6.2)
$=U_{p \in U_{i \in I}}(A, y)(p, a)--$ ind. hyp. $=U_{i \in I} U_{p \in(A, x)}(P, a)--$ set theory $\quad=$

The subset construction

- $\mathrm{N}=\left(\mathrm{Q}_{\mathrm{N}},{ }_{\mathrm{N}}, \mathrm{S}_{\mathrm{N}}, \mathrm{F}_{\mathrm{N}}\right):$ a NFA.
- $\mathrm{M}=\left(\mathrm{Q}_{\mathrm{M}},{ }_{\mathrm{M}}, \mathrm{S}_{\mathrm{M}}, \mathrm{F}_{\mathrm{M}}\right)\left(\right.$ denoted $\left.2^{\mathrm{N}}\right)$: a DFA where
- $\mathrm{Q}_{\mathrm{M}}=2 \mathrm{QN}^{\mathrm{N}}$
- $M_{M}(A, a)={ }_{N}(A, a)\left(=U_{q \in A} \quad N(q, a)\right)$ for every $A \subseteq Q_{N}$.
- $\mathrm{S}_{\mathrm{M}}=\mathrm{S}_{\mathrm{N}}$ and
- $F_{M}=\left\{A \subseteq Q_{N} \mid A \cap F_{N} \neq\{ \}\right\}$.
- note: States of M are subsets of states of N .
- Lem 6.3: for any $A \subseteq Q_{N}$. and x in $*,{ }_{M}(A, x)={ }_{N}(A, x)$.
pf: by ind on $|x|$. if $\left.x=\Rightarrow M^{(A,}\right)=A={ }_{N}(A) .,-(d e f)$
if $x=y a \Rightarrow{ }_{M}(A, y a)={ }_{M}\left({ }_{M}(\mathrm{~A}, \mathrm{y}), \mathrm{a}\right)--(\operatorname{def})={ }_{M}\left({ }_{N}(\mathrm{~A}, \mathrm{y}), \mathrm{a}\right)--$ ind. hyp. $={ }_{N}\left({ }_{N}(\mathrm{~A}, \mathrm{y}), \mathrm{a}\right)-$ def of ${ }_{\mathrm{M}}={ }_{\mathrm{N}}(\mathrm{A}, \mathrm{ya})$-- lem 6.1
Theorem 6.4: M and N accept the same set.
pf: $x \in L(M)$ iff ${ }_{M}\left(S_{M}, x\right) \in F_{M}$ iff ${ }_{N}\left(S_{N}, x\right) \cap F_{N} \neq\{ \}$ iff $x \in L(N)$.

Equivalence of NFAs and DFAs - an example

1. NFA N accepting $A=\left\{x \in\{0,1\}^{*} \mid\right.$ the second symbol from the right is 1$\}=\left\{\mathrm{x} 1 \mathrm{a} \mid \mathrm{x} \in\{0,1\}^{*}\right.$ and $\left.\mathrm{a} \in\{0,1\}\right\}$. sol:

2. DFA M equivalent to N is given as :
3. some states of M are redundant in the sense that they are never reachable from the start state and hence can be removed from the machine w/ o affectino the lanauaces accented.

A more human friendly method

sol:

1. Copy the transition table
2. add $\operatorname{Row}(\mathrm{S}) /{ }^{*}=_{\text {def }}$
$\operatorname{Sum}_{\mathrm{p} \in \mathrm{S}} \operatorname{Row}^{(\mathrm{p})}$ to table */

-transition

- Another extension of FAs, useful but adds no more power.
- An -transition is a transition with label , a label standing for the empty string .
- The FA can take such a

$$
p \longrightarrow q
$$

transition anytime w/ o reading an input symbol.
Ex 6.5 : The set accepted by the FA is $\{b, b b, b b b\}$.
Ex 6.6 : A NFA- accepting the set $\left\{\mathrm{x} \in\{\mathrm{a}\}^{*}| | \mathrm{x} \mid\right.$ is dividable by 3 or 5 \}.

- real advantage of -transition:
- convenient for specification
- add no extra power

Ex6.5

NFA-

- $\mathrm{N}=(\mathrm{Q}$, , , $\mathrm{S}, \mathrm{F}):$ a NFA- ,where
- Q, , S and F are the same as NFA,
- : Qx (U \{ \}) -> 2^{Q}.
- The set Eclosure(A) is the set of ref. and transitive closure of the -transition of $\mathrm{A}=$
$\left\{q \in Q \mid \exists\right.$-path $p-p_{1}-p_{2} \ldots-p_{n}$ with $p \in A$ and $\left.p_{n}=q\right\}$
Note: Eclosure(A) (abbreviated as EC(A)) = EC(EC(A)).
- The multistep version of is modified as follows:
- $: 2^{\mathrm{Q}} \mathrm{x}{ }^{*} \rightarrow 2^{\mathrm{Q}}$ where, for all $\mathrm{A} \subseteq \mathrm{Q}, \mathrm{y} \in *, \mathrm{a} \in \mathrm{A}$
- (A,) = Eclosure(A)
- $(\mathrm{A}, \mathrm{ya})=\mathrm{U}_{\mathrm{p} \in(\mathrm{A}, \mathrm{y})}$ Eclosure(($\left.\mathrm{p}, \mathrm{a}\right)$)
$L(N)=\{x \mid \quad(S), x) \cap F \neq\{ \}\} / /$ The language accepted by N

E-closure

- Eclosure(A) is the set of states reachable from states of A without consuming any input symbols,
(i.e., $q \in$ Eclosure(A) iff $\mathrm{p} \in \mathrm{A}$ s.t. $\mathrm{q} \in\left(\mathrm{p},{ }^{\mathrm{k}}\right)$ for some $\mathrm{k} \geq \mathrm{o}$).
- Eclosure(A) can be computed as follows:

1. $\mathrm{R}=\mathrm{F}=\{ \}$; $\mathrm{nF}=\mathrm{A}$; //F: frontier; nF : new frontier
2. do \{ $R=R U n F ; F=n F ; n F=\{ \}$;
3. For each $q \in F$ do
4. $n F=n F U((q)-R$,
5. \}while $\mathrm{nF} \neq\{ \}$;
6. return R

Note:1. $q \in \quad\left(A,{ }^{k}\right)=>q \in R$ after k-th iteration of the program.
2. We can precompute the matrix T^{*} where T is the e etransition matrix of the NFA. and use the result to get Eclosure(A) for all required As.

The subset construction for NFA-

- $N=\left(Q_{N},{ }_{N}, S_{N}, F_{N}\right):$ a NFA- .where ${ }_{N}: Q x(U\{ \})->2^{Q}$.
- $\mathrm{M}=\left(\mathrm{Q}_{\mathrm{M}},{ }_{\mathrm{M}}, \mathrm{S}_{\mathrm{M}}, \mathrm{F}_{\mathrm{M}}\right)$ (denoted $\mathrm{2}^{\mathrm{N}}$): a DFA where
- $\mathrm{Q}_{\mathrm{M}}=\left\{\mathrm{EC}(\mathrm{A}) \mid \mathrm{A} \subseteq \mathrm{Q}_{\mathrm{N}}\right\}$
- ${ }_{M}(A, a)=U_{q \in E(A)} E C\left({ }_{N}(q, a)\right)$ for every $A \in Q_{M}$.
- $\mathrm{s}_{\mathrm{M}}=\mathrm{EC}\left(\mathrm{S}_{\mathrm{N}}\right)$ and
- $F_{M}=\left\{A \in Q_{M} \mid A \cap F_{N} \neq\{ \}\right\}$.
- note: States of M are subsets of states of N .
- Lem 6.3: for any $\mathrm{A} \subseteq \mathrm{Q}_{\mathrm{N}}$. and $\mathrm{x} \in \quad *,{ }_{\mathrm{m}}(\mathrm{A}, \mathrm{x})={ }_{\mathrm{N}}(\mathrm{A}, \mathrm{x})$.
pf: by ind on $|x|$. if $x=\Rightarrow{ }_{m}(A)=A=,E C(A)={ }_{N}(A$,$) . -(d e f)$
if $x=y a=>{ }_{M}(A, y a)={ }_{m}\left({ }_{m}(A, y), a\right)-$ (def)
$={ }_{M}\left({ }_{N}(\mathrm{~A}, \mathrm{y}), \mathrm{a}\right)$-- ind. hyp.
$=U_{q \in N(A, y)} E C\left({ }_{N}(q, a)\right)-$ def of ${ }_{m}$
$={ }_{N}(\mathrm{~A}, \mathrm{ya})-\operatorname{def}$ of ${ }_{\mathrm{N}}$
Theorem 6.4: M and N accept the same set.
pf: $x \in L(M)$ iff ${ }_{M}\left(S_{M}, x\right) \in F_{M}$ iff ${ }_{N}\left(E C\left(S_{N}\right), x\right) \cap F_{N} \neq\{ \}$ iff $x \in L(N)$.

More closure properties

- If A and B are regular languages, then so are $A B$ and A^{*}.
- $\mathrm{M}=\left(\mathrm{Q}_{1}, ~,{ }_{1}, \mathrm{~S}_{1}, \mathrm{~F}_{1}\right), \mathrm{N}=\left(\mathrm{Q}_{2}, \quad,{ }_{2}, \mathrm{~S}_{2}, \mathrm{~F}_{2}\right)$: two NFAs
- The machine M•N, which firstly executes M and then execute sN , can be defined as follows:
- $\mathrm{M} \cdot \mathrm{N}={ }_{\text {def }}(\mathrm{Q}, \quad, \mathrm{d}, \mathrm{S}, \mathrm{F})$ where
- $\mathrm{Q}=$ disjoint union of Q_{1} and Q_{2},
- $\mathrm{S}=\mathrm{S}_{1}$,
- $\mathrm{F}=\mathrm{F}_{2}$,
$={ }_{1} \mathrm{U}{ }_{2} \mathrm{U}\left\{(\mathrm{p}, \mathrm{q}) \mid \mathrm{p} \in \mathrm{F}_{1}\right.$ and $\left.\mathrm{q} \in \mathrm{S}_{2}\right\}$
- Lem: 1. $x \in L(M)$ and $y \in L(N)$ then $x y \in L(M N)$ 2. $x \in L(M N)=>y, z$ s.t. $x=y z$ and $y \in L(M)$ and $z \in L(N)$.

Corollary: $L(\mathrm{MN})=\mathrm{L}(\mathrm{M}) \mathrm{L}(\mathrm{N})$

M* machine

- $\mathrm{M}=\left(\mathrm{Q}_{1},{ }_{1}, \mathrm{~S}_{1}, \mathrm{~F}_{1}\right):$ a NFA
- The machine M*, which executes M a nondeterministic number of times, can be defined as follows:
- $\mathrm{M}^{*}={ }_{\text {def }}(\mathrm{Q}, \quad, \quad \mathrm{S}, \mathrm{F})$ where
- $\mathrm{Q}=\mathrm{Q} \mathrm{U}\{\mathrm{s}, \mathrm{f}\}$, where s and f are two new states $\notin \mathrm{Q}$
- $S=\{s\}, \quad F=\{f\}$,
$0 \quad={ }_{1} \mathrm{U}\{(\mathrm{s}, \mathrm{r})\} \mathrm{U}\left\{(\mathrm{s}, \mathrm{p}) \mid \mathrm{p} \in \mathrm{S}_{1}\right\} \mathrm{U}\left\{(\mathrm{q}, \mathrm{s}) \mid \mathrm{q} \in \mathrm{F}_{1}\right\}$
Theorem: $\mathrm{L}\left(\mathrm{M}^{*}\right)=\mathrm{L}(\mathrm{M})^{*}$

